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Motivation

2 / 27



Why jets at NNLO?

Hadronic jets occur frequently in final states of high energy particle
collisions.

Because of large production cross sections, jet observables can be
measured with high statistical accuracy; can be ideal for precision studies.

Examples include measurements of:

◮ αs from jet rates and event shapes in e+e− → jets;

◮ gluon PDFs and αs from 2 + 1 jet production in DIS;

◮ PDFs in single jet inclusive, V+ jet in pp (or pp̄) collisions.

Often, relevant observables measured with accuracy of a few % or better.

Theoretical predictions with same level of accuracy necessary. This usually
requires NNLO corrections.
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What is a subtraction scheme?

We know that IR singularities cancel according to the KLN theorem
between real and virtual quantum corrections at the same order in
perturbation theory, for sufficiently inclusive (IR safe) observables.

Example (simple residuum subtraction)

σ =

∫ 1

0

dσR(x) + σV , where

dσR(x) = x−1−ǫS(x) ,

S(0) = S0 < ∞ ,

σV = S0/ǫ+ F .

Define the counterterm dσR,A(x) = x−1−ǫS0. Then

σ =

∫ 1

0

[
dσR(x)− dσR,A(x)

]

ǫ=0
+

[
σV +

∫ 1

0

dσR,A(x)

]

ǫ=0

=

∫ 1

0

[
S(x)− S0

x1+ǫ

]

ǫ=0

+

[
S0

ǫ
+ F −

S0

ǫ

]

ǫ=0

=

∫ 1

0

S(x)− S0

x
+ F

The last integral is finite, computable with standard numerical methods.

4 / 27



In a rigorous mathematical sense, the cancellation of both kinematical
singularities and ǫ-poles must be local. I.e. the counterterm must have
the following general properties

◮ must match the singularity structure of the real emission cross section
pointwise, in d dimensions

◮ its integrated form must be combined with the virtual cross section
explicitly, before phase space integration; ǫ-poles must cancel point
by point
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◮ must match the singularity structure of the real emission cross section
pointwise, in d dimensions

◮ its integrated form must be combined with the virtual cross section
explicitly, before phase space integration; ǫ-poles must cancel point
by point

The construction should be universal (i.e. process and observable
independent)

◮ to avoid tedious adaptation to every specific problem

◮ the integration of counterterms can be performed once and for all

◮ the IR limits of QCD (squared) matrix elements are universal, so a
general construction should be possible

Different specific choices of the counterterm correspond to different IR
subtraction schemes (CS dipole, FKS, antenna,. . . ).
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Why a new subtraction scheme at NNLO?

Dipole subtraction (Catani, Seymour)

✔ the counterterms are
completely local

✔ the construction is fully
explicit for a general process

✘ faces fundamental difficulties
when going to NNLO

Antenna subtraction (Gehrmann-De Ridder, Gehrmann, Glover; Weinzierl)

q⊥ subtraction (Catani, Grazzini; Cieri, Ferrera, de Florian)

Sector decomposition (Binoth, Heinrich; Anastasiou, Melnikov, Petriello)

This scheme (Del Duca, GS, Trócsányi)
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Why a new subtraction scheme at NNLO?

Dipole subtraction (Catani, Seymour)

Antenna subtraction (Gehrmann-De Ridder, Gehrmann, Glover; Weinzierl)

q⊥ subtraction (Catani, Grazzini; Cieri, Ferrera, de Florian)

Sector decomposition (Binoth, Heinrich; Anastasiou, Melnikov, Petriello)

This scheme (Del Duca, GS, Trócsányi)

✔ very algorithmic construction

✔ has the advantages of dipole
scheme: counterterms are
explicitly general and fully local

✔ can cut factorised phase space:
important for efficiency

✘ analytical integration of the
counterterms requires
computing many new integrals
(of high dimension) but can be
done once and for all

6 / 27



Subtraction at NNLO
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What is needed to define a subtraction scheme?

To define a subtraction scheme, three problems must be addressed

1. Matching of limits: the known IR factorization formulae must be
written in such a way, that the overlapping soft/collinear singularities
can be disentangled in order to avoid multiple subtraction.

A1|M
(0)
m+1|

2 =
∑

i

[∑

i 6=r

1

2
Cir + Sr −

∑

i 6=r

CirSr

]
|M

(0)
m+1|

2

2. Extension over PS: the IR factorization formulae valid in the strict
soft/collinear limits have to be defined over the full PS. This requires
the introduction of appropriate mappings of momenta that respect
factorization and the (delicate) cancellation of IR singularities

{p}m+1
r

−→ {p̃}m : dφm+1({p}m+1;Q) = dφm({p̃}m;Q)[dp1,m]

{p}m+2
r,s
−→ {p̃}m : dφm+2({p}m+2;Q) = dφm({p̃}m;Q)[dp2,m]

3. Integration: the counterterms have to be integrated over the phase
space of the unresolved parton(s).
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Specific issues at NNLO

◮ Matching is cumbersome if done in a brute force way. However, an
efficient solution that works at any order in PT is known.

◮ Extension is very delicate. Among other constraints, the
counterterms for singly-unresolved real emission must have universal
IR limits, which is not guaranteed by QCD factorization.

◮ Choosing the counterterms such that integration is (relatively) easy
generally conflicts with the delicate cancellations in the various limits.
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The NNLO cross section

Consider the NNLO correction to a generic m-jet observable

σNNLO =

∫

m+2

dσRR

m+2Jm+2 +

∫

m+1

dσRV

m+1Jm+1 +

∫

m

dσVV

m Jm .
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◮ kin. singularities as
one parton
unresolved: up to
O(ǫ−2) poles from
PS integration

◮ explicit ǫ poles up
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The NNLO counterterms

Rewrite the NNLO correction as

σNNLO =

∫

m+2

dσNNLO

m+2 +

∫

m+1

dσNNLO

m+1 +

∫

m

dσNNLO

m

=

∫

m+2

{
dσRR

m+2Jm+2 − dσ
RR,A2
m+2 Jm −

[
dσ

RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

]}

+

∫

m+1

{[
dσRV

m+1 +

∫

1

dσ
RR,A1
m+2

]
Jm+1 −

[
dσ

RV,A1
m+1 +

(∫

1

dσ
RR,A1
m+2

)
A1

]
Jm

}

+

∫

m

{
dσVV

m +

∫

2

[
dσ

RR,A2
m+2 − dσ

RR,A12
m+2

]
+

∫

1

[
dσ

RV,A1
m+1 +

(∫

1

dσ
RR,A1
m+2

)
A1

]}
Jm
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1

dσ
RR,A1
m+2
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A1
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General features

◮ The counterterms are based on IR limit formulae.

◮ The counterterms are given completely explicitly for any process
without coloured particles in the initial state. (The extension to
hadronic processes is known explicitly to NLO.)

◮ The counterterms are fully local in colour ⊗ spin space: no need to
consider the colour decomposition of real emission matrix elements;
azimuthal correlations correctly taken into account in gluon splitting;
can check explicitly that the ratio of the sum of counterterms to the
real emission cross section tends to unity in any IR limit.

◮ It is straightforward to implement a cut on the factorized phase
spaces. Thus, during PS integration, in any given PS point only a
(small) subset of all subtraction terms needs to be explicitly
evaluated. This is a large gain in efficiency.
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Integrating the counterterms
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Integrated counterterms

Counterterm Types of integrals
M
M

Done

∫
1
dσ

RR,A1
m+2 tree level singly-unresolved

M
M
M

✔

∫
1
dσ

RV,A1
m+1 one-loop singly-unresolved

M
M
M

✔

∫
1
(
∫
1
dσ

RR,A1
m+2 )

A1 tree level iterated singly-unresolved (1)
M
M
M

✔

∫
2
dσ

RR,A12
m+2 tree level iterated singly-unresolved (2)

M
M
M

✔

∫
2
dσ

RR,A2
m+2 tree level iterated doubly-unresolved

M
M
M

✘
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Phase space integrals - an example

Example (collinear-double collinear counterterm)

Among many others, in dσ
RR,A12
m+2 we find the following collinear-double

collinear counterterm

CktC
(0)
ir ;kt = (8παsµ

2ǫ)2
1

skt

1

ŝir
〈M(0)

m ({p̃})|P
(0)
fk ft

(zt,k ; ǫ)P
(0)
fi fr

(ẑr,i ; ǫ)|M
(0)
m ({p̃})〉

× (1− αkt)
2d0−2m(1−ǫ)(1− α̂kt)

2d0−2m(1−ǫ)Θ(α0 − αkt)Θ(α0 − α̂ir )

The set of m momenta, {p̃}, is obtained by an iterated mapping, and
leads to an exact factorization of phase space

{p}m+2
Ckt−→ {p̂}m+1

C
î r̂−→ {p̃} : dφm+2({p};Q) = dφm({p̃};Q)[dp̂1,m][dp1,m+1]

We must then compute

∫
[dp̂1,m][dp1,m+1]CktC

(0)
ir ;kt ≡

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ ]2
CktC

(0)
ir ;ktT

2
ktT

2
ir |M

(0)
m ({p̃})|2

where CktC
(0)
ir ;kt ≡ CktC

(0)
ir ;kt( x̃ kt , x̃ ir , ǫ, α0, d0) is a kinematics dependent

function.
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Example (collinear-double collinear “master integrals”)

Using some explicit parametrization of the factorized phase space
measures, [dp̂1,m] and [dp1,m+1], we find we can express CktC

(0)
ir ;kt as

a linear combination of the following “master integrals”

I
(4)
C (xk , xi ; ǫ, α0, d0, k , l) = xkxi

∫
α0

0

dα

∫
α0

0

dβ α−1−ǫ(1− α)2d0−1

× β−1−ǫ(1− β)2d0−2+2ǫ[α+ (1− α)(1− β)xk ]
−1−ǫ[β + (1− β)xi ]

−1−ǫ

×

∫ 1

0

dv

∫ 1

0

du v
−ǫ(1− v)−ǫ

u
−ǫ(1− u)−ǫ

×

(
α+ (1− α)(1− β)xkv

2α+ (1− α)(1− β)xk

)k (
β + (1− β)xiu

2β + (1− β)xi

)l

where k , l = −1, 0, 1, 2. For this particular integral, we find

I
(4)
C (xk , xi ; ǫ, α0, d0, k , l) =

δk,−1δl,−1

4ǫ4
−

[
δk,−1δl,−1

2
ln(xkxi )

+
(1− δk,−1)δl,−1

2(1 + k(1− δk,−1))
+

(1− δl,−1)δk,−1

2(1 + l(1− δl,−1))

]
1

ǫ3
+O(ǫ−2) .

The O(ǫ−2) part is already rather cumbersome.
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Phase space integrals - methods

Several different methods to compute the integrals have been explored

◮ use of IBPs to reduce to master integrals + solution of MIs by
differential equations

◮ use of MB representations to extract pole structure + summation of
nested series

◮ use of sector decomposition
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Method of IBPs

1. Algebraic reduction of the integrand by means of partial fractioning

1

x(1− x)(1− xyz)
=

1

x
+

1

1− yz

1

1− x
+

y2z2

1− yz

1

1− xyz

Note the appearance of a new denominator: 1− yz. With increasing
numbers of variables, the number of new denominators grows very
rapidly.

2. Reduction to master integrals by means of IBP identities. We can use
the standard Laporta algorithm to solve the IBP relations, but we find
the occurrence of surface terms in the IBPs, consisting of integrals of
lower dimensionality than the original ones.

3. Analytical evaluation of the master integrals. We obtain the ǫ
expansion of the MIs by solving systems of differential equations,
expanded in ǫ. The final results contain one- and two-dimensional
harmonic polylogarithms. For some MIs, a nontrivial basis extension
of 2dHPLs is necessary.
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Method of MB representations

1. Convert sums into products in the integrand

1

(a + b)ν
=

1

Γ(ν)

∫ q+i∞

q−i∞

dz

2πi
a
−ν−z

b
zΓ(ν + z)Γ(−ν)

2. Integrate over the real variables to obtain MB integrals

(1− x)p =

∫ 1

0

dy y
pδ(1− x − y)

∫ 1

0

dx dy x
p1y

p2δ(1− x − y) =
Γ(p1)Γ(p2)

Γ(p1 + p2)

3. Resolve the pole structure by shifting integration contours.

4. Compute the MB integrals, converting them into sums over residua.

5. Perform the sums.
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Method of sector decomposition

Example

1. Transform the integral so that the range of integration is the unit
hypercube, and all singularities are at the borders.

I =

∫ 1

0

dx dy x
−1−ǫ

y
−ǫ[x + (1− x)y ]−1

2. Decompose into “sectors” using 1 = [Θ(x − y) + Θ(y − x)]

3. Remap each integration region to the unit hypercube: for x ≥ y set
y → xt, for y ≥ x set x → yt.

I =

∫ 1

0

dx dt x
−1−2ǫ

t
−ǫ[1 + (1− x)t]−1

+

∫ 1

0

dt dy t
−1−ǫ

y
−1−2ǫ[1 + (1− y)t]−1

4. Resolve the pole structure using simple residuum subtraction. This
gives a finite integral representation for the expansion coefficients.

5. Integrate these representations.
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Analytical and numerical evaluation of the integrated
counterterms

◮ To prove the cancellation of all IR poles requires, as a matter of
principle, that all integrated counterterms are computed analytically.

◮ Analytical results are very fast and accurate compared to numerical
ones.

HOWEVER

◮ They also show (in all cases where they are available) that the
integrated counterterms are very smooth functions of the kinematic
variables.

HENCE

◮ The final results for the integrated counterterms can be conveniently
given by interpolating tables computed once and for all. Thus, for
practical purposes, an efficient implementation is possible even in
cases where the full analytical calculation is not feasible or practical
(e.g. finite parts of integrated counterterms).
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Overview of methods

Method Analytical
M
M

Numerical

IBP

✔
Singly-unresolved
integrals

✘

Bottleneck is the
proliferation of
denominators

✔
By evaluating full
analytical results

✘
No numbers without
full analytical results

MB

✔
Iterated singly-
unresolved integrals

✘
Bottleneck is the
evaluation of sums

✔

Direct numerical
evaluation of MB
integrals possible

✔ Fast and accurate

SD

✔ Easy to automatize

✘

Except for lowest
order poles, possible
only in principle

✘

Numerical behaviour
is generally worse
than MB method
(speed, accuracy)
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Results
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Structure of the integrated counterterm

After summing over unresolved flavours (“counting of symmetry factors”),
the integrated iterated singly-unresolved counterterm is a product of an
insertion operator times the Born cross section

∫

1

dσ
RR,A12
m+2 = dσB

m ⊗ I
(0)
12 ({p}m; ǫ)

The insertion operator has the following structure in colour ⊗ flavour
space

I
(0)
12 ({p}m; ǫ) =

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ ]2{∑

i

[
C

(0)
12,fi

T2
i +

∑

k

C
(0)
12,fi fk

T2
k

]
T2

i

+
∑

j,l

[
S
(0),(j,l)
12 CA +

∑

i

CS
(0),(j,l)
12,fi

T2
i

]
TjTl

+
∑

i,k,j,l

S
(0),(i,k)(j,l)
12 {TiTk ,TjTl}

}

Here the C
(0)
12,fi

, C
(0)
12,fi fk

etc. functions depend on ǫ (having poles up to

O(ǫ−4)) and kinematics (also on the factorized PS cut parameters).
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The insertion operator

Example (e+e− → 2j)

The Born matrix element is |M
(0)
2 (1q , 2q̄)|

2. Colour and kinematics is trivial

T2
1 = T2

2 = −T1T2 = CF , y12 =
2p1 · p2
Q2

= 1

We find the insertion operator

I
(0)
12 (p1, p2; ǫ) =

=

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ ]2{
2CF(3CF − CA)

ǫ4
+

CF

6

[
20CA + 81CF − 4TRnf

+ 12(3CA − 2CF)Σ(y0,D
′
0) + 12(2CA − CF)Σ(y0,D

′
0 − 1)

]
1

ǫ3
+O(ǫ−2)

}

Notice the dependence on the factorized PS cut parameters y0 and D ′
0,

Σ(z ,N) = ln z −
∑N

k=1
1−(1−z)k

k

which should cancel between the various integrated counterterms in the
full doubly-virtual contribution.
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The insertion operator

Example (e+e− → 3j)

The Born matrix element is |M
(0)
3 (1q , 2q̄ , 3g )|

2. Colour is still trivial

T2
1 = T2

2 = CF , T2
3 = CA , T1T2 =

CA − 2CF

2
, T1T3 = T2T3 = −

CA

2

We find the insertion operator

I
(0)
12 (p1, p2, p3; ǫ) =

=

[
αs

2π
Sǫ

(
µ2

Q2

)ǫ ]2{
C 2
A + 2CACF + 6C 2

F

ǫ4
+

[
11C 2

A

2
+

50CACF

3
+ 12C 2

F

−
CATRnf

3
−

C 2
ATRnf

CF

− 4CFTRnf +

(
5C 2

A

2
− CACF − 8C 2

F

)
ln y12

−
CA(5CA + 8CF)

2
(ln y13 + ln y23) + (C 2

A + 6CA2CF − 4C 2
F)Σ(y0,D

′
0)

+ 4CF(CA − CF)Σ(y0,D
′
0 − 1)

]
1

ǫ3
+O(ǫ−2)

}

Higher order expansion coefficients (in ǫ) are computed numerically.
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Conclusions
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Conclusions

✔ We have set up a general subtraction scheme for computing NNLO
jet cross sections, for processes with no coloured particles in the
initial state.

✔ We have investigated various methods to compute the integrated
counterterms.

✔ We used the MB method to perform the integration of the iterated
singly-unresolved counterterm, discussed in this talk. The SD method
was used to provide independent checks.

✔ The integration of all singly-unresolved counterterms is finished. The
iterated singly-unresolved counterterm is essentially finished.

✘ The integration of the doubly-unresolved counterterm is feasible with
our methods, and is work in progress.
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